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DIFFERENCE SCHEMES OF IMPROVED ACCURACY FOR THE /36*
NUMERICAL SOLUTION OF SOME PROBLEMS IN AERODYNAMICS

A. I. Tolstykh

1. As a rule, in the numerical investigation of different

flow classes, use is made of schemes either of first, or second

order of accuracy for smooth functions of the initial equations.

However, often it is desirable to use schemes of higher order of

accuracy. This necessity arises, above all, when calculating

viscid-gas flows when the error of approximation of the inertial

terms can be comparable with the terms containing the coefficient

of viscosity. More exact schemes can prove effective also in the

calculation of flows of an ideal gas. Here the desired accuracy

can be attained with relatively large steps of the calculation

mesh.

The article /1 / shows methods of constructing conservative

difference schemes up to the third order of approximation for all

variables. Some are used for the numerical solution of the

Navier-Stokes equations of a compressible gas. Below we examine

problems associated with the approximation and stability of these

schemes and, as an example, results of calculation of the flow of

an ideal gas behind a detached shock wave in front of a blunt body

are presented.

2. To construct schemes of third-order of approximation for

the simplest equation

Nmti(1)

* Numbers in the margin indicate pagination in the foreign text.



let us apply operators A and A ) on the mesh x. ih by the /37
_ = h by+ t/

formulas

(2)

We can write the difference schemes for Eq. (1) in the form

(3a)

(3b)

(3c)

where

Substituting in (3a) - (3c) sufficiently smooth functions of

f and g and expanding them in a Taylor series, for example, in

the neighborhood of the points x /illegible/ and x /illegible/,

for the error of approximation with Eqs. (1) we thus get the

expressions
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By virtue of (1), all expressions in the parentheses and the

derivatives of these expressions disappear so that the schemes

(3a) - (3c) approximate Eq. (1) with the third order of accuracy

for smooth solutions of the latter. Note that schemes (3b) and

(3c) were separated from the set of schemes (3a) in order to

find the nature of the approximation at node x..

For the equation

N (4)

at the mesh x. = ih, yj = j we can get an approximation of the

form O(h 3 + ek) by replacing the derivative a/ay when x = x i by

any difference ratio (DO/ay) with order of accuracy k and by

using the operators A (i ) and A i  , respectively, to f.. and
+ + 1

(/Way)ij + ij.. In this case schemes (3) can be written as /38

(5)

and the approximation errors, for example, in the case of scheme

(3b) will be of the form

We can use the following two- or three-point formulas as the

simplest expressions for (a9/ay):

(6a)
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"(6b)

This "nonuniform" approximation in all variables is meaningful

also in those cases when it is desirable to have a high order of

accuracy in one of the directions, for example, along the normal

to the body in the case of viscid flows, while for other directions

this is not as essential.

To approximate Eq. (4) with a third order of accuracy in all

variables, let us use the operators A(i) (i) and A and
+ +

corresponding to coordinates x and y, then we can write one of

the sets of the resulting schemes, for example, as

(7)

Expanding sufficiently smooth functions of f and k in a

Taylor series in the neighborhood of the point i + , j, for

the approximation error we get an expression of the form

which for f, q, and ' satisfying Eq. (4) yields terms of the

order of O(h 3 + P3).

Schemes of third-order accuracy in all variables plotted

based on the concepts of the Runge-Kutta method were examined in

/2 7 and /3 7. A large number of template /mesh/ nodes for each

spatial variable evidently complicates their use in solving

boundary value problems.



Note that schemes (3), (5), and (7) can be obtained by another

approach, by passing the corresponding differential equations. To

do this, it suffices to set up a balance of flows across the

boundaries of elementary cells by using the quadrature formulas

(2).

The conservativeness of the schemes described above evidently /39

permits their use also in describing discontinuity solutions of

the starting equations (for example, in calculating flows of an

ideal gas by shock waves).

To approximate the second-order equation written in the
divergent form (for example, in problems of viscid flow), one

can use the above-described method of constructing difference
schemes, either by reducing this equation to a system of first-
order equations, or by considering the expressions for flows
through the corresponding boundaries of cells as dependent on
the first derivatives of the functions being sought.

In particular, for the simplest equation is

! (8)

/illegible/ f = f /illegible/ - z (au/ax), approximating the

derivative with a second order of accuracy and using schemes (3),

we get an approximation for the solution (8) of the form

O(max(zh2, h3)), so that for small E, at least in the domain of

weak gradients of function u, gives a practically high degree of

accuracy.

3. When schemes (5) - (7) were used in solving boundary

value problems, the problem of selecting operator A+ or A_ arises.

This selection can be based on the following considerations:

first, the mesh nodes used must not exceed the bounds of the

domain under consideration and, secondly, the scheme must be

stable at least in the linear approximation for Cauchy's problem.
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To revise the last requirement, let us investigate the

stability of schemes (5) - (7) as applied to the simplest linear

equation:

1 (9)

Let us first consider in the mesh t = m T , x = nh them n
approximation (5) and (6a), which, for example, when a > 0 can

be written as

7t -a (10)

Seeking the proper function of the operator for converting
iaa

from the m-th layer to the (m + l)-th layer in the form un e

for the modulo of the proper number A we get the expression

(11)

where k here and in the following is minus or plus; r = T/g; W

and W+ are functions of the complex argument corresponding to

operators A (n ) and A (n):
an +

We can easily see that Re W < 0 and Re W+ > 0, so that for /40
(n)

operator A nk ensuring that the inequality a Re Wk < 0 is

satisfied, schemes (5) and (6a) are absolutely stable.

In the case of the approximation (5) and (6b), and also

schemes of the third order of accuracy, of type (7), expressions

for the proper number A take on the form

6
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Obviously, to satisfy the relation IXl s 1, it is also

necessary to satisfy the condition a Re Wk < 0. To verify the

sufficiency of the latter, the values of x were computed for

different arguments c(0 a < 2w) and the parameter lal r.

Fig. 1 shows the variation in A = max lxi with variation in lal r
0/illegible7

for schemes (5), (6a), and (7). Clearly, when a Re Wk < 0,

schemes (5) and (6a) are absolutely stable, while scheme (7) is

provisionally stable (stable when lal r < 1).

In the case of the second-order

equation of the form

S(13)

schemes (5) - (7) for derivatives of

the first order with appropriate approxi-
2 2

mation of the derivative a u/ax in the

Fig. 1. (m + l)-th time layer when a Re Wk - 0,

Key: A. Domain of absolutely stable implicit schemes are

instability formed.

When the difference schemes (5) - (7) are used for equations

in gas dynamics, an estimate of the stability necessary to select

the zero indices of the operators used can be obtained from the

difference equations for the corresponding "nondivergent" scheme

with "frozen" coefficients. Let us examine as a simple example

the schemes (5) and (6b) for one-dimensional nonsteady equations

in gas dynamics written in Euler's variables in the form

(1L4)
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where u, p, p, h, and Y are velocity, density, pressure, enthalpy,

and adiabatic index, respectively.

Let the condition lul > c = (Y - l)h be satisfied in some

region, and then by introducing in the mesh t = mT, x = n6 the

operator A(n ) so that u Re Wk > 0, we get for the proper number

A of the operator for converting to the next time layer an

equation of the form

I S(Q)+a-'UW rif u Wr el .. r. i

where r = 76, and S(x) is a function determined in Eq. (12a). /41

This equation breaks down into three equations of the form (12a)

with coefficients a = -u, and a = -(u + c), each of which, X

according to the preceding results, determines the values of

not exceeding unity modulowise.

In the domains where lul < c, in approximations of the first

and second equations in system (14), let us use the operator Akn )

for which Re Wk > 0, and in the approximation of the second equation

let us change the sign in the selected subscript by the opposite

sign. Then noting that Im W /Tllegible7 Im W_, we get the following

equations for determining A values:

Examining the second of these equations as a quadratic

equation in S(X), we arrive at two equations of the form (12a)

with purely imaginary values of coefficient a ensuring that

condition 1x1Il is satisfied. Thus, scheme (5) and (6b) for

this method of approximating system (14) is absolutely stable in

the approximation of "frozen" coefficients.

In solving systems of difference equations in cases when

there is a transition from one layer to another, one can use the



fitting method. Let us examine, for simplicity, the case of a m

mixed problem for Eq. (9) in the strip 0 , x < 1:

When scheme (5) and (6a) (a Re W_ < 0) is used, the difference

equations can be written as

1i (15)

where d signifies the terms containing the values of the functions

at the m-th layer. The secondary boundary condition for (14) can

be obtained from the system of two equations written with n = 1

and n = 2 with reference to a change in the index of the operator

A(n) by the opposite sign. After canceling out u + 1, we get the
k 

0

relation

(16)

where k1 denotes terms dependent on d2 and dl . Using the

expressions for the fitting-in coefficients, we can show that

Eq. (15), with condition (16), can realize the stable curve-

fitting.

Note that an iterative method of solving system (15) is
m+l i

also possible, where the value Unl is taken from the preceding

iteration and the equations are reduced to two-point equations;

we can show that the proper numbers of the corresponding conversion

operator are smaller than unity and the convergence condition has

been satisfied. The use of the iterative process is meaningful in

the case of nonlinear equations.

4. Let us examine briefly the problem of applying the /42

above-described type of schemes to calculating the steady axi-

symmetric flow of an ideal gas between a blunt body and a

9



detached shock wave. We will assume the surface of the shock wave

to be the discontinuity surface at which Hugoniot's relation is

satisfied. By selecting the system of coordinates sn associated

with the body contour (coordinates s and n are directed, respec-

tively, along the surface and along the normal to it) and by

introducing the new variable 4 = n/E where E is the distance of

wave separation, let us write the equations of motion and continuity

in the "divergent" form (4), assuming f and 4 to be the following

vectors:

Here u and v are the tangential and normal velocity components,

v is some combination of u and v arising owing to the introduction

of variable , and H is the Lame coefficient. The role of

coordinates x and y in (4) are played, respectively, by and s.

As the equations closing the system, we will use Bernoulli's

integral, the equation of state, and the geometrical relation for

the compression discontinuity expressing the relation between the

quantity E and the angle of inclination of the wave to the body.

In the strip 0 < s < sM, 0 < ~ 1 /he point (0, 0) lies at the

critical point of the body/ on the mesh s. = iAs, =j

(i = 0, 1, ... , M; j = 0, 1, ... , N), let us introduce the

approximations (5) and (6b)1 with h = A and A = s.

To solve the system of the difference equations, use was made

of the iterative method with relaxation equivalent to some implicit

scheme of the finite-difference method. By iteration we will mean

the calculation of the entire flow field by an implicit scheme

The derivative ap/as was approximated by means of central
differences.
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analogous to scheme (10) for the evolutionary equation (9); here

the role of the time variable t is played by the coordinate

s (s = 0, As, ... , MAs). The final transition to the next

(m + l)-th iteration for any function F was carried out by the

formula

where F m+l) is the value found by solving the differenceij
equations, and E is the relaxation parameter. Both the "simul-

taneous" as well as "successive" relaxation were employed for

different calculation variants; in the latter case the values of

the function were relaxed immediately after they were determined

at all points of the arc s = s..

Successive computation of the unknown functions in passing

from one ray to another can be realized in different ways. The

following procedure was used: the general system of difference

equations was divided into subsystems corresponding to each

differential equation; in each of these subsystems several gas-

dynamic functions were assumed to be known, that is, they were

taken either from the preceding iteration, or else from the

solutions of other subsystems found during the current iteration.

For example, in the difference equations corresponding to the /43

equation of motion in a projection onto the s axis, the values

of the velocity u.. were assumed unknown, while all the remaining
1J

functions p.., v.., and h.. were assumed to be known. The values

thus found in the entire field after relaxation were used in the

remaining equations, and so on.

The specific details of solving the difference equations along

the rays s = const amount to the following. The values of the

functions multiplied by the coefficient 1.12 were assumed known

from the preceding "internal" iteration for each ray so that the

three-point difference equations reduced to two-point equations.

11



This made it possible to conduct a "running computation" from

the wave or from the body with subsequent internal interations.

In practice, sometimes it was sufficient in general not to iterate

the values of the functions on the ray, but to take the quantities

transferred to the right-hand side of the equations from the

preceding "external" iteration.

The difference equations approximating the equation of motion

in the projection onto the s axis were regarded as quadratic in

values of the velocity u.i and were solved successively from wave

to body.

The continuity and motion equations in projections onto the

n axis were assumed to be linear, respectively in velocity v and

density p. The values of v..ij were determined successively from

body to wave, while the values rij were determined from wave to

body; the value of the detachment c was found from the difference

approximation of the continuity equation.

The values of the functions

calculated at the i-th ray were

used in the difference equations

for the (i + l)-th ray. The

conditions of symmetry and the

derivatives (au/as) calculated

from the preceding iteration were

used at the ray s = 0; when s = sl,

two-point difference approximations

of derivatives in s were used always,

without loss of accuracy owing to

the symmetry conditions; these

derivatives were written along the

ray s = sM by means of the left

difference ratios.

Selection of operators A+
Fig. 2. t s i

g.Key: A. Mesh 2.or A , if this selection influenced
Key: A. Mesh12

12



the stability of the scheme in the linear approximation, was

carried out just as in the case of equation (9), with the only

difference that instead of (9), we considered the "nondivergent"

equations with "frozen" coefficients with the corresponding

independent equations or systems. Selection of the subscript k

of operator Ak to some degree is analogous with the selection

of the direction of the nonsymmetric differences as a function

of the signs of velocities in nonsymmetric difference schemes;

here, in view of the nonlinearity of the equations the final

conclusion as to the stability of the approximation used can be

made only after numerical experiments.

The calculations were conducted for values of the relaxation

parameter w = 0.1; and the number of iterations to obtain three /44

coincident values of the numbers over the last 50 iterations was

200-300.

As an example, in Fig. 2 are shown the positions of the

shockwave and the sonic line for the M, = 3 and 10 and the

adiabatic index Y = 1.4 calculated for several difference meshes

(sM = 1.6); also given there are the data from /7_7. In Fig. 3

is shown the distribution of pressure along the body contour com-

pared with the results in / ) 7.
As we can see from Figs.

2 and 3, the data are quite

close to the generally

accepted results and differ

little with increase in step

As. For control of the cal-

culation accuracy, we can use

the value of the entropy S =

= p/pT at the zero streamline,

Fig. 3. since the equation of conser-

Key: A. Mesh vation of entropy was never

used in the initial system.

Fig. 3 gives the function of S(s) varying over the interval

/, w/27 by not more than 4 percent.
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